
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Overloading
 Polymorphism
 Overriding

Created By Arthur Hoskey, PhD

Method Signatures and
Overloading

 We will start with method signatures
overloading…

Created by Arthur Hoskey, PhD

Method Signature

 Signatures identify methods.

 Method signature consists of two pieces:
1. Method name
2. Method parameters

 Method signatures must be unique within
a given scope (for example inside a
class).

 Cannot have two methods with the same
signature in the same scope.

 Return type is NOT part of the signature!

Created by Arthur Hoskey, PhD

 What are the method signatures?

public class Test
{

public void H() { System.out.println("Hello"); }
public void G() { System.out.println("Goodbye");
public void I(int num) { System.out.println(num); }
public void J(String s, int num) {

System.out.printf("%s %d\n", s, num);
}
public void K(int num, String s) {

System.out.printf("%s %d\n", s, num);
}

}

Created by Arthur Hoskey, PhD

 The method signatures are:

Signature Name Parameters
H() H none
G() G none
I(int num) I int
J(String s, int num) J String, int
K(int num, string s) K int, String

Created by Arthur Hoskey, PhD

 Is this legal? Are methods ambiguous?

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void G() {
System.out.println("Goodbye");

}
}

Created by Arthur Hoskey, PhD

 YES. It is legal.

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void G() {
System.out.println("Goodbye");

}
}

LEGAL. Same
parameter lists
but different

names so OK.

Created by Arthur Hoskey, PhD

 Is this legal?

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void H() {
System.out.println("Goodbye");

}
}

Created by Arthur Hoskey, PhD

 NO. It is not legal.

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void H() {
System.out.println("Goodbye");

}
}

NOT LEGAL.
Same

parameter lists
and same

names.

Cannot
distinguish
between the

two.

Created by Arthur Hoskey, PhD

 Is this legal?

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void H(String m) {
System.out.println("Goodbye");

}
}

Created by Arthur Hoskey, PhD

 YES. It is legal!!!

public class Test
{

public void H()
{

System.out.println("Hello");
}

public void H(String m) {
System.out.println("Goodbye");

}
}

LEGAL. Same
name but
different

parameter list
so OK.

Signatures are
different!

Created by Arthur Hoskey, PhD

Overloading

 Overloading

 Same name but different parameter lists.

 Two methods can have the same name in
the same scope as long as they have
different parameter lists.

 If the parameter lists differ then the
signatures will differ even if the method
name is the same.

Created by Arthur Hoskey, PhD

 Is this legal?

public class Test {
public void H()
{

System.out.println("Hello");
}

public int H() {
System.out.println("Goodbye");
return 10;

}
}

Created by Arthur Hoskey, PhD

 NO. It is NOT legal!!!

public class Test {
public void H()
{

System.out.println("Hello");
}

public int H() {
System.out.println("Goodbye");
return 10;

}
}

NOT LEGAL.
Same name and
same parameter

list.

Return type is
NOT part of the

method
signature!

Created by Arthur Hoskey, PhD

Initialization - REVIEW

 How do we initialize a variable?

 For primitive types it is easy:

int hourlyWorked = 35;

double hourlyRate = 35.50;

bool hourlyEmployee = true;

Created by Arthur Hoskey, PhD

Initialization - REVIEW

 Reference types are tricker.

 A special method called a constructor is
used to initialize an instance of an object.

 Constructors are called when you call new
on the object being created.

 For example…

Created by Arthur Hoskey, PhD

Constructor - REVIEW

public class Person {
private int m_Age;

public Person()
{

m_Age = 10;
}

}

Person p;
p = new Person(); // Calls constructor

Created by Arthur Hoskey, PhD

Constructor - REVIEW

 Default constructor takes no parameters.

 You can also create constructors that take
parameters.

 For example…

Created by Arthur Hoskey, PhD

Constructor - REVIEW

public class Person {
private int m_Age;

public Person(int age)
{

m_Age = age;
}

}

Person p;
p = new Person(20); // Pass value into constructor

Created by Arthur Hoskey, PhD

Overloading Constructor

 The name of the constructor is the name of the
class.

 Can you create more than one constructor for a
class? YES!!!

 What must be different about each constructor?

 You can have as many constructors as you like as
long as ALL the method signatures are unique.

 For example…

Created by Arthur Hoskey, PhD

Overloading Constructor

public class Person {
private int m_Age;

public Person() // Zero parameters
{

m_Age = 10;
}

public Person(int age) // One parameter
{

m_Age = age;
}

}

Created by Arthur Hoskey, PhD

Overriding

 We will now move on to overriding…

Created by Arthur Hoskey, PhD

Inheritance - REVIEW

 What is inheritance?

 A form of code reuse.

 Create a new class from an existing class.

 Use an existing class as a “base” for the new
class.

 The new class adds on to the existing class.

Created By Arthur Hoskey, PhD

Inheritance - REVIEW

 Inheritance: “is-a” relationship

 A derived class “is-a” type of the base
class.

 “A dog is an animal”

 Base classes are more general than
derived classes.

Created By Arthur Hoskey, PhD

Employee

Inheritance - REVIEW

Manager

Created By Arthur Hoskey, PhD

Manager is derived
from Employee

Inheritance - REVIEW

public class Employee
{

protected int m_Id;

public Employee(int newId)
{ m_Id = newId; }

public int GetId()
{ return m_Id; }

public void SetId(int newId)
{ m_Id = newId; }

}

Created by Arthur Hoskey, PhD

Inheritance - REVIEW

public Manager extends Employee
{

private String m_SecretaryName;

public Manager(int newId, String newSec)
{

super(newId); // Calls base class or superclass
// constructor.

m_SecretaryName = newSec;
}

// Assume other methods are declared here…
}

Created by Arthur Hoskey, PhD

Manager is derived
from Employee

Overloading Vs Overriding

 Overload
◦ Same method name BUT different
signature.

 Override
◦ Same method name AND same signature
◦ Different implementation between classes in
the inheritance hierarchy.

◦ One implementation of the method is in the
base class and the other is in the derived class.

Created By Arthur Hoskey, PhD

Overloading Vs Overriding

Overload (different signature) Override (same signature)
Base Vs Derived

Employee::Show() Employee::Show()

Employee::Show(int num) HourlyEmployee::Show()

OVERRIDE
ALL implementations of Show()
have the SAME signature. Each
implementation of Show() differs
between the base and derived
class.

OVERLOAD
Each implementation of Show() has
a DIFFERENT signature.

Created By Arthur Hoskey, PhD

Polymorphism

 Polymorphism means “many forms” in
Greek.

 IMPORTANT!!!
Overloading AND overriding are two
examples of polymorphism in
programming.

 There were many different forms of the
Show() method on the previous slide.

Created By Arthur Hoskey, PhD

Inheritance and Overriding

 Write programs to process objects that share the
same base class in a class hierarchy.

 Create a base class that other classes can derive
from.

 The base class defines the common behavior that
we care about.

 Put common behavior in the base class.
 Program to the common behavior.

Created By Arthur Hoskey, PhD

Overriding Example

 In this example we will need to calculate and show an
employee's weekly salary.

 We will do the following:
◦ Define common behavior in the base class (Employee).
◦ Override common behavior in derived classes.

 The common behavior in this example will be a method
named ShowWeeklySalary.

Created By Arthur Hoskey, PhD

Overriding Example

public class Employee {
protected double salary;

public Employee(double s) { salary = s; }
public double GetSalary() { return salary; }
public void SetSalary(double newSalary) { salary = newSalary; }

public void ShowWeeklySalary() {
double weeklySalary = salary / 52.0;

System.out.printf("Yearly Rate = $%.2f\n", salary);
System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}

}

Created By Arthur Hoskey, PhD

All employees presently at this company make a
yearly salary. To calculate their weekly salary, we must

divide by 52 (number of weeks in 1 year).

Overriding Example

public static void main(String[] args)
{

Employee normalEmp = new Employee(52000);

System.out.println("Weekly Salary Report");
System.out.println("--------------------");

normalEmp.ShowWeeklySalary();
}

Created By Arthur Hoskey, PhD

Show the
weekly salary

Overriding Example

Hire Hourly Employees
 Now suppose we need to hire some workers who will get paid by

the hour.

 Their weekly salary will get calculated differently.

 We can create a new class named HourlyEmployee that is derived
from Employee.

 The logic to calculate an hourly employee's weekly salary will be
in this new class.

 For example…

Created By Arthur Hoskey, PhD

Overriding Example

public class HourlyEmployee extends Employee
{

public HourlyEmployee(double newSalary)
{

super(newSalary);
}

// OVERRIDE Employee::ShowWeeklySalary()
@Override
public void ShowWeeklySalary()
{

double weeklySalary = salary * 40;

System.out.printf("Hourly Rate = $%.2f\n", salary);
System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}
}

@Override will cause a compile
error to appear if the method

being overrided does not exist
on a base class (helps with

spelling mistakes).

@Override is NOT required.
Program will run fine without it.

Created By Arthur Hoskey, PhD

Multiply salary (the hourly rate in this
case) by 40 (total hours for week)

Overriding Example

public static void main(String[] args)
{

Employee normalEmp = new Employee(52000);
Employee hourlyEmp = new HourlyEmployee(20);

System.out.println("Weekly Salary Report");
System.out.println("--------------------");

normalEmp.ShowWeeklySalary();
hourlyEmp.ShowWeeklySalary();

}

Created By Arthur Hoskey, PhD

You can put an HourlyEmployee reference in
an Employee variable because

HourlyEmployee is derived from Employee
(HourlyEmployee "is an" Employee)

Call ShowWeeklySalary on
each Employee instance

Overriding

 How does the computer know which version of
ShowWeeklySalary() to call?

Created By Arthur Hoskey, PhD

Overriding

 Answer:
The underlying type determines which version of the method to
call.

Employee normalEmp = new Employee(52000);
Employee hourlyEmp = new HourlyEmployee(20);

// Calls Employee::ShowWeeklySalary()
normalEmp.ShowWeeklySalary();

// Calls HourlyEmployee::ShowWeeklySalary()
hourlyEmp.ShowWeeklySalary();

Created By Arthur Hoskey, PhD

Overriding Example Revisited

 We can update the previous example's main code
so that we store all employees in one array and
process them in the same way.

 For example…

Created By Arthur Hoskey, PhD

Overriding Example Revisited

public static void main(String[] args)
{

Employee[] emps = new Employee[2];
emps[0] = new Employee(52000);
emps[1] = new HourlyEmployee(20);

System.out.println("Weekly Salary Report");
System.out.println("--------------------");

for (int i=0; i<emps.length; i++)
{

emps[i].ShowWeeklySalary();
}

}

Created By Arthur Hoskey, PhD

You can put an HourlyEmployee reference in
the Employee array since HourlyEmployee

is derived from Employee

The version of
ShowWeeklySalary that

gets called depends on the
underlying type of the
current array element.

Overriding Example Revisited

 We can further update the previous example's
code.

 In the new version we will create a method that
only has code related to Employee that can still
process HourlyEmployees.

 For example…

Created By Arthur Hoskey, PhD

Overriding Example Revisited

public static void main(String[] args) {
Employee[] emps = new Employee[2];
emps[0] = new Employee(52000);
emps[1] = new HourlyEmployee(20);

report(emps);
}

public static void report(Employee[] ea) {
System.out.println("Weekly Salary Report");
System.out.println("--------------------");

for (int i=0; i<ea.length; i++)
{

ea[i].ShowWeeklySalary();
}

}

Created By Arthur Hoskey, PhD

The report method is completely
based on Employee (no code

related to any other classes). Any
class that is derived from

Employee can be put into the array
and be processed by this method.

Call the report method and
pass in the Employee array

Overriding

 What does the following code cause to happen?
class B {

private int salary;
public B() // Base constructor
{ salary = 0; }

}

class D extends B {
@Override
public D() // Derived constructor
{ }

}
public class Driver {

public static void main(String[] args) {
D d = new D();

}
}

Can you override the base
class constructor???

Created By Arthur Hoskey, PhD

Overriding

 What does the following code cause to happen?
class B {

private int salary;
public B() // Base constructor
{ salary = 0; }

}

class D extends B {
@Override
public D() // Derived constructor
{ }

}
public class Driver {

public static void main(String[] args) {
D d = new D();

}
}

Can you override the base
class constructor???

NO. Cannot override base
class constructor!

1. To override you need to
use the same name and
parameter list.

2. Only one of the
overridden methods in
the inheritance hierarchy
runs. We always need
both constructors to run
no matter what.

Created By Arthur Hoskey, PhD

End of Slides

 End of Slides

Created By Arthur Hoskey, PhD

